您现在的位置是:首页 >综合 > 2023-09-07 11:54:07 来源:
一元一次方程举例10个(一元一次方程举例)
大家好,我是小夏,我来为大家解答以上问题。一元一次方程举例10个,一元一次方程举例很多人还不知道,现在让我们一起来看看吧!
通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1; (4)含未知数的项的系数不为0。 一元一次方程英文是(linear equation in one)
使方程左右两边相等的未知数的值叫做方程的解。 一般解法: 1.去分母:在方程两边都乘以各分母的最小公倍数; 2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号) 3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号 4.合并同类项:把方程化成ax=b(a≠0)的形式; 5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a. 同解方程 如果两个方程的解相同,那么这两个方程叫做同解方程。 方程的同解原理: ⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。 ⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。 做一元一次方程应用题的重要方法: ⒈认真审题 ⒉分析已知和未知的量 ⒊找一个合适的等量关系 ⒋设一个恰当的未知数 ⒌列出合理的方程 ⒍解出方程 ⒎检验 ⒏写出答案 ax=b 解:当a≠0,b=0时, ax=0 x=0 当a≠0时,x=b/a。 当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程) 当a=0,b≠0时,方程无解 例: (3x+1)/2-2=(3x-2)/10-(2x+3)/5 去分母(方程两边同乘各分母的最小公倍数)得, ↓ 5(3x+1)-10×2=(3x-2)-2(2x+3) 去括号得, ↓ 15x+5-20=3x-2-4x-6 移项得, ↓ 15x-3x+4x=-2-6-5+20 合并同类项得, ↓ 16x=7 系数化为1得, ↓ x=7/16。 字母公式 a=b a+c=b+c a-c=b-c a=b ac=bc a=bc(c≠0)= a÷c=b÷c
本文到此讲解完毕了,希望对大家有帮助。