您现在的位置是:首页 >综合 > 2024-05-21 05:51:25 来源:
因式分解的四种基本方法(分解质因数的方法)
大家好,我是小夏,我来为大家解答以上问题。因式分解的四种基本方法,分解质因数的方法很多人还不知道,现在让我们一起来看看吧!
分解质因数的方法
短除法
求最大公因数的一种方法,也可用来求最小公倍数。 求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。 例如:求12与18的最大公因数。 12的因数有:1、2、3、4、6、12。 18的因数有:1、2、3、6、9、18。 12与18的公因数有:1、2、3、6。 12与18的最大公因数是6。 这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。 12=2×2×3 18=2×3×3 12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公约数2和3,而它们的乘积2×3=6,就是 12与18的最大公约数。 采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公约数和最大公约数。如果把这两个数合在一起短除,则更容易找出公约数和最大公约数。 从短除中不难看出,12与18都有公约数2和3,它们的乘积2×3=6就是12与18的最大公约数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公约数,就是这两个数的公共质因数的连乘积。 实际应用中,是把需要计算的两个或多个数放置在一起,进行短除。 在计算多个数的最小公倍数时,对其中任意两个数存在的约数都要算出,其它无此约数的数则原样落下。最后把所有约数和最终剩下无法约分的数连乘即得到最小公倍数。 只含有1个质因数的数一定是亏数。
给你个百度百科的链接,应该很详细,自己再看下!
本文到此讲解完毕了,希望对大家有帮助。