您现在的位置是:首页 >要闻 > 2020-12-09 15:21:34 来源:
这个柠檬可以帮助机器学习创造更好的药物
使用机器学习进行药物开发的挑战之一是为计算机创建一个过程,以从一组数据点中提取所需的信息。药物科学家必须提取生物学数据并训练软件,以了解典型的人体将如何与结合在一起的药物相互作用而形成药物。
普渡大学的药物发现研究人员创建了一个新的框架,用于挖掘用于训练机器学习模型的数据。这个名为柠檬的框架可帮助药物研究人员更好地挖掘蛋白质数据库(PDB),该数据库是一种综合资源,具有超过140,000个生物分子结构,并且每周都会发布新的结构。这项工作发表在10月15日的生物信息学上。
普渡大学理学院分析和物理化学助理教授高拉夫·乔普拉(Gaurav Chopra)说:“ PDB是药物发现界必不可少的工具。“问题在于,整理所有累积的数据可能要花费大量时间。机器学习可以提供帮助,但是您仍然需要一个强大的框架,计算机可以从中快速分析数据以帮助创建安全有效的框架。。”
Lemon软件平台是带有Python绑定的快速C ++ 11库,可在数分钟内挖掘PDB。在PDB中加载所有传统的mmCIF文件大约需要290分钟,但是,在8核计算机上应用简单的工作流程时,Lemon大约需要6分钟。Lemon允许用户编写自定义功能,将其包括在其软件套件中,并以标准方式开发自定义功能,从而为整个科学界生成独特的基准测试数据集。
“在PDB中存放的实验结构为结构和计算生物学的科学和教育界带来了许多进步,有助于推动药物开发和其他领域的发展,” Jonathan Fine博士说。与Chopra合作开发平台的化学专业学生。“我们创建了Lemon作为一站式商店,可以快速挖掘整个数据库并提取对开发药物至关重要的有用的生物学信息。”
Lemon之所以得名,是因为它最初旨在为药物设计软件创建基准测试集,并在PDB中识别柠檬,无法很好建模的生物分子相互作用。