您现在的位置是:首页 >要闻 > 2023-08-11 13:40:14 来源:

圆形面积公式表示(圆形面积)

导读 大家好,我是小夏,我来为大家解答以上问题。圆形面积公式表示,圆形面积很多人还不知道,现在让我们一起来看看吧!圆的面积:S=πr²=πd...

大家好,我是小夏,我来为大家解答以上问题。圆形面积公式表示,圆形面积很多人还不知道,现在让我们一起来看看吧!

圆的面积:S=πr²=πd²/4

扇形弧长:L=圆心角(弧度制) * r = n°πr/180°(n为圆心角)

扇形面积:S=nπ r²/360=Lr/2(L为扇形的弧长)

圆的直径: d=2r

圆锥侧面积: S=πrl(l为母线长)

圆锥底面半径: r=n°/360°L(L为母线长)(r为底面半径)

1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x^2+y^2=r^2。

2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:

(1)、当D^2+E^2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D^2+E^2-4F)/2为半径的圆;

(2)、当D^2+E^2-4F=0时,方程表示一个点(-D/2,-E/2);

(3)、当D^2+E^2-4F<0时,方程不表示任何图形。

3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)

圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0

圆的离心率e=0,在圆上任意一点的半径都是r。

经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线方程为 a0*x+b0*y=r^2

在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2

扩展资料

垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。

切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

切线的性质:(1)经过切点垂直于过切点的半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

切割线定理: 圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB

割线定理 :与切割线定理相似——同圆上两条割线m、n交于p点,割线m交圆于A1 B1两点,割线n交圆于A2 B2两点

则pA1·pB1=pA2·pB2(可以把切割线定理看做是割线定理的极限情形)。

参考资料:圆面积的百度百科

本文到此讲解完毕了,希望对大家有帮助。