您现在的位置是:首页 >要闻 > 2024-01-11 22:48:39 来源:
秩的拼音(秩)
大家好,我是小夏,我来为大家解答以上问题。秩的拼音,秩很多人还不知道,现在让我们一起来看看吧!
1、第一个角度,也就是书本上的定义,矩阵中的任意一个r阶子式不为0,且任意的r+1阶子式为0,则阶数r就叫作该矩阵的秩。
2、对一个矩阵,存在某个r阶行列式,值不为0,这个r阶行列式就是对一个矩阵你画r条横线,r条竖线,这个横竖线交叉的元素构成了一个新的数表,这个数表的行列式就叫作这个矩阵的r阶子式。
3、第二个角度,如果我们把矩阵进行初等行变换,将矩阵变换为一个行阶梯形矩阵后,那么行阶梯形矩阵的非0行就是这个矩阵的秩。这是通过运算的角度来给出的矩阵的秩的定义,对矩阵进行初等行变换后得到的行阶梯形矩阵的非0行的个数。
4、第三个角度,是从线性方程组的角度来给出的,我们可以把秩理解为一种约束,因为方程我们就可以理解为约束,当我们把矩阵看成齐次线性方程组的系数的时候,矩阵的秩就是这个方程组里真正存在的方程的个数。
5、虽然写出了很多个方程,但有一些是没有用的,可以由其他方程来表示的,这些没用的消去之后剩下的真正的约束的个数就是这个矩阵的秩。
6、第四个角度,将矩阵看成由一个个向量放在一起拼成的,这个秩就是向量组中独立的向量的个数,其实和上述方程组的角度是差不多的。
7、扩展资料
8、定理:矩阵的行秩,列秩,秩都相等。
9、定理:初等变换不改变矩阵的秩。
10、定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。
11、定理:矩阵的乘积的秩Rab<=min{Ra,Rb};
12、引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
13、当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
14、当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
15、参考资料来源:百度百科-矩阵的秩
本文到此讲解完毕了,希望对大家有帮助。