您现在的位置是:首页 >要闻 > 2024-07-23 03:41:46 来源:

系统辨识课程(系统辨识)

导读 大家好,我是小夏,我来为大家解答以上问题。系统辨识课程,系统辨识很多人还不知道,现在让我们一起来看看吧!1、先验知识指关于系统运动...

大家好,我是小夏,我来为大家解答以上问题。系统辨识课程,系统辨识很多人还不知道,现在让我们一起来看看吧!

1、先验知识指关于系统运动规律、数据以及其他方面的已有知识。这些知识对选择模型结构、设计实验和决定辨识方法等都有重要作用。用于不同目的的模型可能会有很大差别。

2、先验知识是指关于系统运动规律、数据以及其他方面的已有知识。这些知识对选择模型的结构、设计实验和决定辨识方法等都具有重要的作用。例如可以从基本的物理定律(牛顿定律,基尔霍夫定律,物质守恒定律等)去确定模型结构,建立所研究的变量之间的关系。如果关于这方面的知识是完备的,模型的结构和参数(至少在原则上)便是可以确定的。在空间技术的应用中建立飞行器的动力学模型就是一个例子。但在多数情形下却很难做到这一点。这时先验知识虽然不能完全确定模型,但是在模型结构(也就是辨识中的模型类)的选择上仍然是一个重要因素。此外,对参数变化范围的确定、初值的选取,对数据的必要的限制,以及对模型的适用性进行检验等方面,先验知识也都是最重要的依据。

3、其次,建模的目的对于确定模型的结构和辨识方法也有重要意义。用于不同目的的模型可能会有很大的差别。在估计具有特定物理意义的参数时,主要考虑模型的参数值与真实的参数值是否一致。在建立预测模型时,只需要考虑预测误差。在建立仿真模型时,就要根据应用的要求去决定仿真的深度,也就是决定模型结构的复杂程度。而对于设计控制系统的模型,则出于不同的控制目的可选择不同的模型类。 辨识是从实验数据中提取有关系统信息的过程,设计实验的目标之一是要使所得到的数据能包含系统更多的信息。主要包括输入信号设计,采样区间设计,预采样滤波器设计等。

4、辨识的基础是输入和输出数据,而数据来源于对系统的实验和观测,因此辨识归根到底是从数据中提取有关系统的信息的过程,其结果是和实验直接联系在一起的。设计实验的目标之一是要使所得到的数据能包含系统的更多的信息。为此,首先要确定用什么准则来比较数据的好坏。这种准则可以是从辨识的可行性出发的,也可以是从某种最优性原则出发的。实验设计要解决的问题主要是:输入信号的设计,采样区间的设计,预采样滤波器的设计等(见系统辨识实验设计)。 造成模型不适用主要有三方面原因:模型结构选择不当;实验数据误差过大或数据代表性太差;辨识算法存在问题。检验方法主要有利用先验知识检验和利用数据检验两类。

5、凡是需要通过实验数据确定数学模型和估计参数的场合都要利用辨识技术,辨识技术已经推广到工程和非工程的许多领域,如化学化工过程、核反应堆、电力系统、航空航天飞行器、生物医学系统、社会经济系统、环境系统、生态系统等。适应控制系统则是辨识与控制相结合的一个范例,也是辨识在控制系统中的应用。

本文到此讲解完毕了,希望对大家有帮助。